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Key Concepts

Key Concepts:

Instantaneous power

Average power

Effective or rms values

Complex power

Power factor

Power factor correction
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Recall an AC Steady-State System

VL = i · ZLoad
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Instantaneous Power

Instantaneous power:

Instantaneous power is a power at a particular point in time.

p(t) = v(t) · i(t)

where v(t) and i(t) are voltage and current at the particular time.

When p(t) > 0, the network is consuming power.

When p(t) < 0, the network in supplying power.
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Instantaneous Power of an AC System (I)

p(t) = v(t) · i(t)

Given v(t) = Vm cos(ωt + θV ) and i(t) = Im cos(ωt + θI ),

p(t) = Vm cos(ωt + θV ) · Im cos(ωt + θI )

= VmIm cos(ωt + θV ) · cos(ωt + θI ).
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Instantaneous Power of an AC System (II)

p(t) = VmIm cos(ωt + θV ) · cos(ωt + θI ).

From a product of cosine identity:
cos(A) cos(B) = 1

2 {cos(A− B) + cos(A + B)}, therefore

p(t) =
VmIm

2
{cos(θV − θI ) + cos(2ωt + θV + θI )}

=
VmIm

2
cos(θV − θI )︸ ︷︷ ︸

time-constant part

+
VmIm

2
cos(2ωt + θV + θI )︸ ︷︷ ︸

time-varying part

. (1)
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Instantaneous Power of an AC System (III)

p(t) =
VmIm

2
cos(θV − θI )︸ ︷︷ ︸
offset

+
VmIm

2
cos(2ωt + θV + θI )︸ ︷︷ ︸

sinusoid

.

VmIm
2 cos(θV − θI ) (constant to time) plays an offset role.

VmIm
2 cos(2ωt + θV + θI ) is a sinusoidal part with its frequency

doubled from the original.
⇒ its magnitude is VmIm

2 .
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Recall Properties of R, L, and C

R: I = V/R = Vm
R ∠θV

⇒ I and V are in phase: θV = θI .

L: I = V/(jωL) == Vm
ωL∠(θV − π

2 )

⇒ I lags V by π
2 : θV − θI = π

2 .

C: I = V · (jωC ) == VmωC∠(θV + π
2 )

⇒ I leads V by π
2 : θV − θI = −π

2 .
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Instantaneous Power on R, L, and C (I)

p(t) =
VmIm

2
cos(θV − θI )︸ ︷︷ ︸
offset

+
VmIm

2
cos(2ωt + θV + θI )︸ ︷︷ ︸

sinusoid

.

R: In phase L: Lagging by π
2 C: Leading by π

2

θV = θI θV − θI = π
2 θV − θI = −π

2

⇒ offset = VmIm
2 . ⇒ offset = 0. ⇒ offset = 0.

With this offset, With no offset,
pR ≥ 0 all the times. sinusoid will oscillate around 0.
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Instantaneous Power on R, L, and C (II)

p(t) =
VmIm

2
cos(θV − θI ) +

VmIm
2

cos(2ωt + θV + θI ).

R: In phase L: Lagging C: Leading

offset = VmIm
2 . offset = 0.

p(t) ≥ 0 always. p(t) ≥ 0 half the times
p(t) ≤ 0 another half
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Instantaneous Power on R, L, and C (III)

R: In phase L: Lagging C: Leading

p(t) ≥ 0 always. p(t) ≥ 0 half the times
p(t) ≤ 0 another half

R always consumes L and C are energy-storage devices.
power. p(t) > 0⇒ stores power

p(t) < 0⇒ releases power
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Example: Instantaneous Power (I)

V1(t) = 311 sin(314.2t)

V1 ≡ 311∠− π
2

ZR1 = 100Ω

ZL1 = j150.8Ω

ZC1 = −j198.9Ω

Z = 100− j48.1Ω

∴ I = V1/Z = 2.8∠− 1.12

i(t) = 2.8 cos(314.2t − 1.12)

VR1 = I · ZR1 = 280.3∠− 1.12

VL1 = I · ZL1 = 422.6∠0.45

VC1 = I · ZC1 = 557.4∠− 2.69

VR1(t) = 280.3 cos(314.2t − 1.12)

VL1(t) = 422.6 cos(314.2t + 0.45)

VC1(t) = 557.4 cos(314.2t − 2.69)
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Example: Instantaneous Power (II)

Im = 2.8; θI = −1.12

Vm(R1) = 280.3; θV (R1) = −1.12

Vm(L1) = 422.6; θV (L1) = 0.45

Vm(C1) = 557.4; θV (C1) = −2.69

pR1(t) = (280.3)(2.8)
2 + (280.3)(2.8)

2 cos(2(314.2)t − 1.12− 1.12)

pL1(t) = (422.6)(2.8)
2 cos(2(314.2)t + 0.45− 1.12)

pC1(t) = (557.4)(2.8)
2 cos(2(314.2)t − 2.69− 1.12)
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Example: Instantaneous Power (III)

pR1(t) = 392.4 + 392.4 cos(628.4t − 2.24)

pL1(t) = 591.6 cos(628.4t − 0.67)

pC1(t) = 780.4 cos(628.4t − 3.81)
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Example: Instantaneous Power (IV)

Vload = V1

⇒ ∴ Vload = 311∠− π
2

Vm(load) = 311; θV (load) = −π
2

pload(t) = (311)(2.8)
2 cos(−π

2 + 1.12) + (311)(2.8)
2 cos(628.4t − π

2 − 1.12)

= 391.9 + 435.4 cos(628.4t − 2.69)
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Average Power (I)

Instantaneous power is too detailed and it tells too little about overall
power consumption.

Average Power:
P = 1

T

∫ t0+T
t0

p(t)dt

where T is a time period; t0 is an arbitrary point in time.
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Average Power (II)

From p(t) = VmIm
2 cos(θV − θI ) + VmIm

2 cos(2ωt + θV + θI )

Thus, average power
P = 1

T

∫ t0+T
t0

{
VmIm

2 cos(θV − θI ) + VmIm
2 cos(2ωt + θV + θI )

}
dt.

Since integration over a period of a periodic function is 0.∫ t0+T
t0

f (t)dt = 0 when T is a period of f (t),

then
P = VmIm

2 cos(θV − θI ) + 0.

That is,

P =
VmIm

2
cos(θV − θI ). (2)
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Average Power (III)

Average power over R: PR = VmIm
2

Average power over (ideal) L: PL = 0

Average power over (ideal) C: PC = 0

Average power over an impedance Z = Zm∠θz : PZ = VmIm
2 cos θz

Recall: Z = V/I and θZ = θV − θI .
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Example: Average Power (I)

Find an average power over a combination of loads Z1 and Z2.

(1) Let voltage source: 20 Vp sine 100 Hz;
Z1 is a 500Ω resistor and Z2 is a 200mH inductor.

(2) Let voltage source: 10 Vpp cosine 10 Hz; Z1 is a 1kΩ resistor and
Z2 is a 16µF inductor.
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Example: Average Power (II)

I = V/(Z1+Z2) = 0.0388∠−1.817.
P = (20)(0.0388)

2 cos(−π
2 + 1.817)

∴ P = 0.3763 W.

I = 3.54m∠0.783.
P = (5)(3.54m)

2 cos(0− 0.783)

∴ P = 6.59 mW.
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Effective Values (I)

An AC voltage can be described in many ways: peak value Vp ,
peak-to-peak value Vpp , magnitude Vm = Vp , or amplitude
Va = Vm = Vp .

How are these quantities compared to a DC voltage?
⇒ Rationale is to describe a magnitude of an AC voltage in a way to
comprehend its real work.

I.e., describing the magnitude of an AC voltage by an amount of a
DC voltage that will deliver the same average power to a resistor.
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Effective Values (II)

Veff : an amount of a dc voltage that delivers the same average power
as its counterpart Vs .

Average power on R by an AC voltage
Pac = 1

T

∫ T
0

v2
s

R dt

Average power on R by a DC voltage
Peff =

v2
eff
R .
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Effective Values (III)

Solve for veff (delivering the same power as vs :

veff =

√
1
T

∫ T

0
v2

s dt. (3)

Since the result is obtained by squaring, averaging, and finding a
square root, it is called a “Root-Mean-Square” value or “RMS” for
short. 23/57
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Effective Values (IV)

The effective value of an ac voltage is the amount of its dc
equivalence, i.e., supplying the same average power on a resistor.
So is an effective value of an ac current.

vrms =
√

1
T

∫ T
0 v2

s dt irms =
√

1
T

∫ T
0 i2s dt
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RMS on Sinusoid
Given vs(t) = Vm cos(ωt),

Vrms =

√
1
T

∫ T

0
(Vm cos(ωt))2 dt

= Vm

√
1
T

∫ T

0
cos2(ωt)dt

= Vm

√
1
T

∫ T

0

1 + cos(2ωt)

2
dt

= Vm

√√√√√1
2
· 1
T

∫ T

0
1dt︸ ︷︷ ︸

1

+
1
T

∫ T

0

cos(2ωt)

2
dt︸ ︷︷ ︸

0

=
Vm√

2
. (4)
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RMS Values

Vrms = Vm√
2

Irms = Im√
2

⇒ Conveniently, average power

P =
Vm · Im

2
cos(θV − θI )

=
Vm√

2
· Im√

2
cos(θV − θI )

= Vrms · Irms cos(θV − θI ).
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Complex Power (I)

voltage and current can be represented in frequency domain as
complex numbers.

So is power!
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Complex Power (I)

Given V = Vm∠θV and I = Im∠θI , complex power delivered to the
element is defined as:

S =
V · I∗

2
=

(Vm∠θV ) · (Im∠− θI )

2

=
Vm · Im

2
∠(θV − θI )

= Vrms · Irms∠(θV − θI ) (5)

where I∗ is a complex conjugate of I.
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Complex Power (II)

Complex power S = Vm·Im
2 ∠(θV − θI ).

Magnitude |S| = Vm·Im
2 is called “apparent power”.

Its rectangular form:

S =
Vm · Im

2
cos(θV − θI )︸ ︷︷ ︸

P

+j
Vm · Im

2
sin(θV − θI )︸ ︷︷ ︸

Q

S = P + jQ .

Its real part P is average power or real power.

Its imaginary part Q is called “reactive power”.

S’unit is VA (Volt-Amp).
P’s is W.
Q’s is VAR (Volt-Amp Reactive).
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Power Factor

Complex power S =
Vm · Im

2
cos(θV − θI )︸ ︷︷ ︸

P

+j
Vm · Im

2
sin(θV − θI )︸ ︷︷ ︸

Q

.

Real power P =
Vm · Im

2︸ ︷︷ ︸
|S|

· cos(θV − θI )︸ ︷︷ ︸
power factor

.

Power factor pf = cos(θV − θI ).

pf angle θV − θI > 0 ⇒ “lagging”
Current lags voltage → inductive load.

pf angle θV − θI = 0 ⇒ “in-phase”
Current and voltage are in-phase → purely resistive load.

pf angle θV − θI < 0 ⇒ “leading”
Current leads voltage → capacitive load.
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Example: Load Impedance (I)

An electric load operates at 240 Vrms. The load consumes an average
power of 8 kW at a lagging power factor of 0.8.
(a) Calculate the complex power of the load.
(b) Calculate the impedance of the load.
Solution for (a):

pf = cos(φ) = 0.8 and P = 8kW = |S| · cos(φ).
⇒ |S| = 8k/0.8 = 10 kVA.

lagging ⇒ φ > 0.
⇒ φ = cos−1 0.8 = 0.6435 rad.

∴ Q = |S| · sin(φ) = 10k sin(0.6435) = 6 kVAR.

S = P + jQ = 8 + j6 kVA.
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Example: Load Impedance (II)

Solution for (b):

P = 8kW = VmIm
2 · pf = Vrms · Irms · pf = 240 · Irms · 0.8

⇒ Irms = 41.67 A.

Impedance Z = V
I = Vm

Im
∠(θV − θI ) = Vrms

Irms
∠φ = 240

41.67∠0.6435.
⇒ Z = 4.608 + j3.456 Ω.
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PF and Transmission Loss (I)

The transmission lines for electrical power

Transmission lines are significantly different from ideal wires.
Zline = R1 + jωL1.

Average power losing on the lines
Pline = I 2rms · Re{Zline} = I 2rmsR1.
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PF and Transmission Loss (II)

Average power losing on the lines
Pline = I 2rms · Re{Zline} = I 2rmsR1.

A large load is often inductive, e.g., machine, motor, pump, etc.

Power consumed by the load is what its owner pays.
Pload = Vrms Irms · pf .

Power losing on the lines is just a waste of energy, which customers
do not pay, but it costs an electric supplier.

Given the same Pload and operating voltage Vrms , a lower pf causes a
higher current Irms . And, a higher current Irms ⇒ a higher Pline .
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PF and Transmission Loss (III)

Pload = Vrms Irms · pf .
Pline = I 2rms · Re{Zline} = I 2rmsR1.

Example: a 1.4kW Load with a lagging power factor of 0.8, operated at
220 Vrms 50Hz.

Current i drawn by the load: Irms = 1.4k
(220)(0.8) = 7.95 A.

Supposed R1 = 1 Ω, Pline = (7.95)2(1) = 63.27 W.
⇒ To put it in perspective, if the load is run 20 hr/day, 350 days a year,
that counts 7000 hours. Supposed the price is 5 baht/unit, energy loss:
Eloss = (63.27)(7000) = 442890 Wh = 442.89 units.
Thus, estimated loss is 2214.45 baht for this one customer.
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PF and Transmission Loss (III)

Irms = Pload
Vrms ·pf .

Pline = I 2rmsR1.

Line loss as a function of power factor

Pline =

(
Pload

Vrms · pf

)2

R1.
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With pf of 0.8, the power line loss is over 50% of the ideal case (pf = 1).
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Power Factor Correction (I)

To mitigate, a customer is required to have the power factor above an
agreeable level.

To “correct” power factor of a load, a correcting impedance is
installed across the terminals of the customer’s load.
⇒ having the correcting impedance parallel to the load retains the
load operating voltage.
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Power Factor Correction (II)

The correcting impedance should turn power factor of the load to

pfc = cosφp,

where pfc and φp are the target power factor and the target pf angle.
Given load impedance Z = R + jX and correcting impedance Zc = Rc + jXc ,

the correcting impedance should not consume power itself: Rc = 0 ⇒ Zc = jXc .
(It must be purely reactive, C or L.)
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Power Factor Correction (III)

Target power factor: pfc = cosφp .
Original load: Z = R + jX .
Correcting impedance: Zc = jXc .

corrected impedance: Zp = ZZc
Z+Zc

= Rp + jXp = Zp∠θp .

note: pf angle = load angle, i.e., θp = φp .
⇒ Zp = Zp∠φp

⇒ φp = tan−1 Xp

Rp
⇒ pfc = cos(tan−1 Xp

Rp
) ⇒ Xp

Rp
= tan(cos−1 pfc).
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Power Factor Correction (IV)

(1) Zp = ZZc

Z+Zc
= Rp + jXp .

(2) Xp

Rp
= tan(cos−1 pfc).

Target: pfc = cosφp .
Impedances: Z = R + jX and Zc = jXc .

Work the math, from (1):

Zp =
(R + jX )(jXc )

(R + jX ) + jXc
=

RX 2
c

R2 + (X + Xc)2︸ ︷︷ ︸
Rp

+j
R2Xc + (Xc + X )XXc

R2 + (X + Xc)2︸ ︷︷ ︸
Xp

.

Put the result into (2):

R2Xc + (Xc + X )XXc

RX 2
c

= tan(cos−1 pfc).
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Power Factor Correction (V)

Solve for Xc in terms of R , X , and pfc :

Xc =
R2 + X 2

R tan(cos−1 pfc)− X
. (6)
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Example: Power Factor Correction

Reactive value:
Xc = R2+X 2

R tan(cos−1 pfc)−X

Example. A 1.4kW load with a lagging pf of 0.8, operating at 220 Vrms
50 Hz, is required to be corrected for pf of 0.95.
Solution:
Recalling from the previous example, Irms = 7.95 A. Then,
Z = 220

7.95∠( +︸︷︷︸
lagging

cos−1 0.8) = 27.67∠0.64 = 22.19 + j16.52 Ω.

Thus, Xc = 22.192+16.522

22.19·tan(cos−1 0.95)−16.52 = −82.9. Since Xc < 0, the correcting
impedance must be capacitive: Xc = − 1

ωC . Given ω = 2π(50) = 314.16
rad/s, C = 38.4 µF (or larger).
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Power Factor Correction: Inductive Load (I)

Reactive value:
Xc = R2+X 2

R tan(cos−1 pfc)−X

The larger pfc (closer to 1), the better.

pfc → 1 ⇒ cos−1 pfc → 0 ⇒ tan(cos−1 pfc)→ 0.

Sign of Xc is opposite to the sign of X .
⇒ Correct capacitive load with inductor.
⇒ Correct inductive load with capacitor.
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Power Factor Correction: Inductive Load (II)

Typical loads are inductive. Thus, Xc = − 1
ωC and

− 1
ωC

=
R2 + X 2

R tan(cos−1 pfc)− X

ωC =
X − R tan(cos−1 pfc)

R2 + X 2

=
R

R2 + X 2 ·
(
X

R
− tan(cos−1 pfc)

)
.

Given an original pf angle φ = tan−1 X
R , hence

C =
R

ω · (R2 + X 2)
· (tanφ− tanφc ) , (7)

where φ = cos−1 pf and φc = cos−1 pfc . 44/57
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Example: Power Factor Correction on Inductive Load

Given the original load Z = 100 + j100 Ω

at 60 Hz, find C to improve pf to 0.95.

Solution:

φ = tan−1 X
R = 0.785 rad.

φc = cos−1 pfc = 0.318 rad.

ω = 2πf = 377 rad/s.

C = 100
377·(1002+1002)

· (tan 0.785− tan 0.318) = 8.9 µF (or larger).
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Power Superposition for Multi-Frequency Excitation (I)

Superposition: i = i1 + i2.
Instantaneous power: p = i2R = (i1 + i2)2R = (i21 + i22 + 2i1i2)R .

Average power:

P =
1
T

∫ T

0
p(t)dt =

1
T

∫ T

0
(i21 + i22 + 2i1i2)Rdt

= P1 + P2 +
2R
T

∫ T

0
(i1 · i2)dt.

Caution! Superposition principle cannot apply to power in
46/57
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Power Superposition for Multi-Frequency Excitation (II)

Average power:

P = P1 + P2 + 2R
T

∫ T

0
(i1 · i2)dt︸ ︷︷ ︸

Given i1 = I1 cos(ω1t + θ1) and i2 = I2 cos(ω2t + θ2),∫ T
0 (i1 · i2)dt = I1I2

∫ T
0 cos(ω1t + θ1) cos(ω2t + θ2)dt.

From cosA cosB = cos(A−B)+cos(A+B)
2 ,∫ T

0
(i1 · i2)dt =

I1I2
2

∫ T

0
(cos((ω1 − ω2)t + θ1 − θ2)) dt

+
I1I2
2

∫ T

0
(+ cos((ω1 + ω2)t + θ1 + θ2)) dt︸ ︷︷ ︸

0

.
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Power Superposition for Multi-Frequency Excitation (III)

Average power:

P = P1 + P2 + 2R
T

∫ T

0
(i1 · i2)dt︸ ︷︷ ︸

∫ T

0
(i1 · i2)dt =

I1I2
2

∫ T

0
(cos((ω1 − ω2)t + θ1 − θ2)) dt

=

{
0 for ω1 6= ω2,
I1I2T

2 cos(θ1 − θ2) for ω1 = ω2.

That is,

P = P1 + P2 +

{
0 for ω1 6= ω2,

I1I2R cos(θ1 − θ2) for ω1 = ω2.
(8)
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Power Superposition for Multi-Frequency Excitation (III)

“The average power delivered to a circuit by several sinusoidal sources,
acting together, is equal to the sum of the average power delivered to the
circuit by each source acting alone, if and only if no two of the sources
have the same frequency.”

Ptotal = P1 + P2 + · · ·+ PN

=
∑

i

Pi ,

where Pi is a power computed as if the i th sinusoidal source acting alone
and no two sources have the same frequency.
Caution! Superposition principle cannot be applied to power in general.
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Example: Power Superposition (I)

Find power PR consumed by R in this
setting: vA(t) = 155.6 cos(377t);
iB(t) = 1.2 cos(314.16t);
R = 50 Ω and L = 0.5 H.

Solution:

Both sources have different frequencies.
⇒ use superposition to work on one source at a time.

Since both sources are sinusoidal and have different frequencies,
power superposition can be applied.
PR = PR(vA) + PR(iB).
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Example: Power Superposition (II)

ω1 = 377 rad/s

ZR = 50; ZL = j188.5.

VA = 155.6∠0.

I1 = VA
50+j188.5

= 0.798∠− 1.31

PR(vA) = I 21rmsR

=
(

0.798√
2

)2
50 = 15.92 W.

ω2 = 314.16 rad/s

ZR = 50; ZL = j157.08.

IB = 1.2∠0.

I2 = −IB · YR
YR+YL

= −1.2 (1/50)
(1/50)+(1/j157.08)

= 1.143∠− 2.83.

PR(iB) = I 22rmsR

=
(

1.143√
2

)2
50 = 32.69 W.
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Example: Power Superposition (III)

Since both sources have different frequency, the power superposition is
valid:

PR = PR(vA) + PR(iB)

= 15.92 + 32.69 = 48.61W .
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Maximum Average Power Transfer (I)

At some situation, we may want to find a load ZL

such that the power delivered to the load is
maximum.

To simplify the task, the portal circuit is
modeled by Thevenin equivalent circuit.

Supposed ZTh = RTh + jXTh and ZL = RL + jXL, current I = VTh
ZTh+ZL

.

Average power PR = VmIm
2 = 1

2 I
2
mRL = 1

2
|VTh|2RL

(RTh+RL)2+(XTh+XL)2

Find XL and RL maximizing PR .
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Maximum Average Power Transfer (II)

PR = 1
2

|VTh|2RL

(RTh+RL)2+(XTh+XL)2
.

Notice that XL = −XTh maximizing PR .
Solve ∂PR

∂RL
= 0 for RL

⇒ RL = RTh.

Thus,
ZL = RTh − jXTh = Z∗Th. (9)

The maximum power is:

Pmax =
|VTh|2Th

8RTh
. (10)
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Example: Maximum Average Power Transfer (I)

Determine the load impedance ZL maximizing
the average power drawn from the circuit.
What is the maximum average power?
Solution:

Firstly, find Thevenin equivalent circuit.
⇒ (V divider) Voc = 10 · 8−j6

4+8−j6 = 7.454∠− 0.18.
⇒ (Mesh analysis)
−10 + 4I1 + (8− j6)(I1 − I2) = 0.
(8− j6)(I2 − I1) + j5I2 = 0.
Solve for I2 = Isc = 1.395∠− 1.1696.
⇒ VTh = Voc = 7.454∠− 0.18.
⇒ ZTh = Voc/Isc = 2.93 + j4.47.
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Example: Maximum Average Power Transfer (II)

VTh = 7.454∠− 0.18.
ZTh = 2.93 + j4.47.

ZL = Z∗Th = 2.93− j4.47 Ω.

Pmax =
|VTh|2Th
8RTh

= 7.4542

8(2.93) = 2.37 W.
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Further Study

David E. Johnson, Johnny R. Johnson, John L. Hilburn, and Peter D. Scott,
Electric Circuit Analysis. Wiley 3rd edition (January 15, 1997).
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